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The synthesis of ring brominated long-chain 2-alkoxythiophenes is reported, involving mild (Oxone) oxidation of readily prepared
2-thienyltrifluoroborate salts followed by Mitsunobu etherification. Both procedures are operationally straightforward and use inexpensive
reagents. Using this approach, several novel mono- and dibrominated octyloxythiophenes with previously elusive substitution patterns were
prepared. One such compound was elaborated to a novel 5-alkoxythieno[3,2-b]thiophene-2-carboxylate ester, marking the first synthetic entry

into this family of compounds.

Alkoxythiophene subunits have recently attracted atten-
tion in a variety of materials applications. The more
synthetically accessible 3-alkoxythiophenes have found
particular application in conducting polymers' for photo-
voltaic and nonlinear optical applications. Although 2-
alkoxythiophenes have been less extensively explored, they
have found applications as liquid crystals,? photochromic
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materials,® potential nonlinear optical (NLO) materials via
organometallic complexes,® and bioactive targets.’
Traditional approaches for the alkoxylation of hetero-
aromatic systems include Ullmann-type copper-mediated
reactions® and nucleophilic aromatic substitution.” How-
ever, despite several examples of high-yielding alkoxylation
to afford 3-alkoxythiophenes'®® (reported yields range
from 40 to 90% but are typically above 80%), these
approaches are not amenable to functionalization at the
C-2 position of the thiophene ring. 2-Methoxylation® and
2-ethoxylation”®!® of halothiophenes can sometimes be
efficient, but yields vary substantially (10—88%) depending
on the substrate and are typically modest. Increasing the
alkyl tail length results in reduced yields®*!" even under
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aggressive conditions. Efficient access to 2-alkoxythiophenes
is possible by reaction of y-keto esters with Lawesson’s
reagent; however, this approach requires an aryl substituent
at the C-5 position of the resulting 2-alkoxythiophene.'
Other analogous sulfurization approaches suffer from low
yield /reproducibility or problematic mixtures of products.'?
In contrast to phenolic systems, Williamson etherification of
hydroxythiophenes (which exist as thienones'* in the absence
of strong hydrogen-bonding groups) gives mixtures of pro-
ducts due to unwanted reaction at the C-3 and C-5 sites.'?
Recently, several palladium-'® and copper-**®'7 catalyzed
coupling approaches to 3-alkoxythiophenes from halothio-
phenes and alcohols have been reported; however, none of
these methods have been extended to 2-alkoxythiophenes.
Thus, the preparation of 2-alkoxythiophenes remains a
significant synthetic challenge.'®

We required a series of brominated 2-alkoxythiophenes
3c—eas synthetic intermediates en route to other materials.
However, no good literature methods exist for the pre-
paration of C-3 and C-4 brominated 2-alkoxythiophenes,
as the previously discussed approaches are generally in-
efficient and alkoxylation of dibromothiophenes tends to
proceed with poor regioselectivity.”®

Herein we report the development of a strategically
distinct approach to ring brominated 2-alkoxythiophenes
that involves the selective metalation of a range of bro-
mothiophene precursors en route to the corresponding
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Figure 1. Strategic approach to brominated 2-alkoxythiophene
targets from bromothiophene precursors.

3-, 4-, or 5-bromo-2-thienyltrifluoroborates. Mild oxida-
tion to the corresponding 2(5H)-thienones followed by
Mitsunobu etherification then affords the brominated
2-alkoxythiophene target compounds (Figure 1).

Trifluoroborate salts have recently attracted attention
as easily handled boronic acid analogs that are stable
to a range of reaction conditions, including a variety of
oxidants'” (TPAP/NMO, Swern, Dess-Martin periodi-
nane, and IBX) which leave the trifluoroborate moiety
intact. Interestingly, as recently reported by Molander and
Cavalcanti,”° aryl trifluoroborates can be efficiently oxi-
dized to phenols with Oxone in acetone and water at room
temperature. The resulting compounds were highly pure
after only a silica plug filtration. Although the authors
reported the successful oxidation of phenyl, benzo[b]furan-
2-yl, benzo[b]thien-2-yl, and 3-thienyl trifluoroborate salts,
2-thienyltrifluoroborates were not studied. However, we
reasoned that these intermediates would offer an attractive
approach to novel brominated 2(5H)-thienones 2b—e,
since it is well-known that hydroxythiophenes instantly
tautomerize'* to 2(5H)-thienones.

A series of 2-thienyltrifluoroborate salts 1la—e were
readily prepared from commercially available and inex-
pensive thiophene precursors via the corresponding boro-
nic acids;?' the syntheses of these materials are described in
the Supporting Information.

Oxidation of 1a—e to the corresponding 2(5H)-thienones
2a—e was achieved via a modified version of Molander’s
recent procedure®® (Table 1). In the operationally straight-
forward oxidation procedure, 2-thienyltrifluoroborate
salt 1 in acetone (0.2 M) was mixed with aqueous Oxone
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Table 1. Oxone-Mediated Oxidation of 2-Thienyltrifluoroborate
Salts 1 to 2(5H)-Thienones 2¢

RZ R3 R2 R3
/Z/_g\ Oxone (2 equiv) /Z:L
R! BF;K R 6]
s s acetone/H,0 s
1 it 2
time yield
entry product R! R2 R3 (min) (%)®
1 2a H H H 5 71
2 2b Br H H 5 79¢
3 2c H Br H 5 79
4 2¢ H Br H 60 —d
5 2d H Br Br 30 63
6 2d H Br Br 60 7
7 2e H H Br 60 76

“Conditions: substrate (0.1 M), Oxone (0.2 M, 2 equiv), in acetone/
H,O (1:1), rt, ambient atmosphere. ?Isolated yield after silica plug
filtration (petroleum ether). “Product decomposes upon storage.
4Significant (> 10%) presence of a byproduct after silica plug filtration.

(0.4 M in potassium monopersulfate) at room temperature
under an ambient atmosphere. Quenching with acid, work-
up, and elution through a silica plug with dichloromethane
furnished the desired 2(5H)-thienone 2 in high purity.
Although good yields (71—-79%) were obtained for 2a—c
after only 5 min of reaction (Table 1, entries 1-3), the
formation of 2d was slower, requiring 1 h to reach a
comparable yield (entries 5 and 6). Compound 2e was also
prepared using this extended reaction time (entry 7). Inter-
estingly, when the reaction leading to 2¢ was allowed to
proceed for 1 h (entry 4), a significant amount (ca. 10%)
of an unidentified byproduct formed, as seen by '"H NMR;
it was thus important to limit the reaction time to 5 min
(entry 3). However, this impurity was easily separable by
recrystallization of 2¢. Similar byproduct formation was
not seen for 2d—e. Compounds 1a and 1b were not exposed
to the 1 h reaction conditions due to concerns regarding the
stability of 2a and 2b and because good yields were achieved
after 5 min.

2(5H)-Thienones 2a (liquid)** and 2b (solid, mp =
23 °C)** are somewhat air-sensitive and decompose even
on storage in the freezer. In contrast, 2(5H)-thienones
2c—e are high-melting (ca. 80—114 °C) air-stable solids
that crystallize easily.

Elaboration of 2(5H)-thienones 2a—e to the correspond-
ing 2-alkoxythiophenes 3a—e required a selective O-alky-
lation procedure that avoided the known problems associ-
ated with the simple O-alkylation of 2(5H)-thienones.'
Our attention was drawn to a recent report by Harris and
co-workers,>® who achieved the Mitsunobu etherification
of the parent 2(5H)-thienone 2a using di-zert-butyl azodi-
carboxylate (DTAD) and polystyrene-supported PPh;
with a variety of alcohols.

(22) Frisell, C.; Lawesson, S.-O. Org. Synth., Coll. Vol. 5, 1973, 642—645.
(23) Jakobsen, H. J. Tetrahedron 1967, 23, 3737-3742.

5060

Table 2. Synthesis of Substituted 2-Alkoxythiophenes by
Mitsunobu Etherification”

R R HocsHy, RRR
— DIAD, PPh;
1 1
RTS8770 chyon, -10°c R 787 OCeH7
2 3
time yield
entry product R! R? R? (h) (%)
1 3a H H H 1 83
2 3b Br H H 24 -
3 3c H Br H 1 86
4 3d H Br Br 1 87
5 3e H H Br 1 80

“Conditions: (i) PPh; (3 equiv), CH,Cl,, —10 °C, (ii) DIAD
(3 equiv), —10 °C, 10 min, (iii) 1-octanol (3 equiv), —10 °C, 30 min,
(iv) substrate 2 (1 equiv), —10 °C — rt, 1 h, unless otherwise stated.
bIsolated yield after column chromatography (petroleum ether).
“Only trace amounts of product detected by '"H NMR.

We modified Harris’ conditions for experimental conve-
nience and lowered expense. 2(5H)-Thienones 2 were trea-
ted with 3 equiv each of diisopropyl azodicarboxylate
(DIAD), PPh;, and 1-octanol in anhydrous dichlorome-
thane at ca. —10 °C under an argon atmosphere (Table 2).
After 1 h at room temperature, the reaction mixture was
concentrated and filtered through a short silica plug with
petroleum ether to remove the polar byproduct. The result-
ing crude products 3 could easily be further purified
by column chromatography to afford air-stable, colorless
liquids. Using this method, we prepared 3a (entry 1) and
3c—e (entries 3—5) in excellent yields (80—87%). This
reaction was amenable to scale-up (~2 g quantities of 3c
and 3d were prepared) with no change in yield.

Interestingly, despite the efficiency of this chemistry
when using other substrates, 5-bromo-2(5H)-thienone 2b
could not be transformed in this way to desired product 3b
(Table 2, entry 2). After 24 h under these conditions, only
a trace of the desired product was seen by 'H NMR.
Additionally, a larger proportion of the protodebromi-
nated adduct 3a was noticed, indicative of a competing side
reaction with substrate 2b.

Scheme 1. Elaboration of 2-Alkoxythiophene 3¢ to Novel
5-Alkoxythienothiophene 6

Br 1)LDA, THF, -78 °C Br
CgH470 s 2) N-formylpiperidine CgH¢70 s CHO
3) ag NH,CI
3c (92%) 4

s 0
CBH17OW
s OCgHig  K,COs, DMF, 65 °C, 14 h

6 (86%)
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In order to preliminarily demonstrate the usefulness
of these 2-alkoxythiophenes as synthetic building blocks,
we have prepared the first long-chain alkoxythienothio-
phene from 2-alkoxythiophene 3¢ (Scheme 1). Previously,
only a handful of simple short-chain (OR = OMe, OEt,
Or-Bu) 5-alkoxythieno|[3,2-5]thiophenes have been reported. >
Importantly, the methods used were harsh as well as
inefficient and could not be extended to other alkyl
chains. Indeed, in our hands, an analogous nucleophilic
substitution approach to 6 from a 2-chlorothieno[3,2-b]-
thiophene-2-carboxylate ester gave no traces of the de-
sired product.

Formylation of 3¢ with LDA and N-formylpiperidine
afforded 4 in excellent yield (92%). Exploiting our recently
reported method for thienothiophene synthesis,** we trea-
ted aldehyde 4 with nonyl mercaptoacetate 5 in the pre-
sence of base at 65 °C, affording thienothiophene 6 in good
yield (86%) via a tandem nucleophilic aromatic substitu-
tion and aldol condensation reaction (we saw no difference
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21996, 1377-1384. (b) Mazaki, Y.; Takiguchi, N.; Kobayashi, K. Chem.
Lett. 1991, 1117-1120. (c) Testaferri, L.; Tiecco, M.; Zanirato, P. J. Org.
Chem. 1975, 40, 3392-3395.
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in the two-step yield whether or not intermediate 4 was
purified).

In summary, we have developed the first efficient syn-
thetic approach to long-chain ring brominated 2-alkoxy-
thiophenes. This oxidation and etherification sequence,
starting from readily prepared potassium 2-thienyltrifluo-
roborate salts, is operationally straightforward and em-
ploys inexpensive reagents. Moreover, it allows access to
2-alkoxythiophenes bearing halogens as functional han-
dles in previously elusive substitution patterns. Efforts are
ongoing in our laboratory to expand the scope of this
transformation and to explore the use of these ring bromi-
nated 2-alkoxythiophenes as synthetic building blocks en
route to electron-rich organic materials.
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